CIRCUITO ELÉTRICO

Um circuito elétrico é a ligação de elementos elétricos, tais como resistores, indutores, capacitores, diodos, linhas de transmissão, fontes de tensão, fontes de corrente e interruptores, de modo que formem pelo menos um caminho fechado para a corrente elétrica.

LEIS DE Ohm

A Lei de Ohm, assim designada em homenagem ao seu formulador, o físico alemão Georg Simon Ohm (1787-1854), afirma que, para um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante. Essa constante é denominada de resistência elétrica.

RESISTOR

Um resistor (frequentemente chamado de resistência, que é na verdade a sua medida) é um dispositivo elétrico muito utilizado em eletrônica, ora com a finalidade de transformar energia elétrica em energia térmica por meio do efeito joule, ora com a finalidade de limitar a corrente elétrica em um circuito.

INDUTOR

Um indutor é um dispositivo elétrico passivo que armazena energia na forma de campo magnético, normalmente combinando o efeito de vários loops da corrente elétrica. O indutor pode ser utilizado em circuitos como um filtro passa baixa, rejeitando as altas frequências.

CAPACITOR

Capacitor ou condensador é um componente que armazena energia num campo elétrico, acumulando um desequilíbrio interno de carga elétrica. Historicamente, a ideia de seu uso baseia-se na Garrafa de Leiden inventada acidentalmente em 1746 por Pieter van Musschenbroek na cidade de Leyden na Holanda.

quinta-feira, 22 de agosto de 2013

Circuito RC

CIRCUITO RC
A figura abaixo mostra o diagrama de circuito para um capacitor , com carga inicial Q0, que é descarregado ligando-o a uma resistência R. Esse circuito é designado de circuito RC.

Ressonância

RESSONÂNCIA

A reatância equivalente num circuito varia com a frequência. Se o circuito inclui condensadores e indutores, a reatância será uma função da frequência. Quando a reatância for elevada, o módulo da impedância será elevado e o fator de potência baixo. Isso implica corrente máxima e potência média muito baixas. Nas frequências em que a reatância for menor, o módulo da impedância será menor e a potência dissipada maior. Em alguns casos (indutores em série com condensadores) poderá existir uma frequência intermédia, para a qual a reatância equivalente é nula. Nesse caso o módulo da impedância será mínimo, o fator de potência será máximo e as fases da tensão e da corrente serão iguais (fasores na mesma direção e sentido). Quando isso acontece, diz-se que a tensão de entrada está em ressonância com o circuito. A frequência para a qual a reatância é nula é um valor caraterístico do circuito, designado de frequência de ressonância.


Potência dissipada nos circuitos

POTÊNCIA DISSIPADA NOS CIRCUITOS

Em qualquer ponto num circuito de corrente alternada, a corrente é uma função sinusoidal. Em cada período de oscilação, a mudança de sinal da função sinusoidal indica que o sentido da corrente muda. O integral da função, em cada período é nulo. Isso quer dizer que a carga transferida é nula; durante metade do período há transporte de carga num sentido, mas no restante meio período a mesma carga é transportada no sentido inverso.
Não existe transferência efetiva de carga nos circuitos de corrente alternada. As cargas de condução simplesmente oscilam à volta de uma posição de equilíbrio. A pesar de não existir transferência efetiva de cargas, existirá dissipação efetiva de energia, porque a oscilação das cargas está a ser contrariada pela resistência dos condutores e existe efeito Joule, independentemente do sentido da corrente.
Em qualquer dispositivo passivo dentro de um circuito com uma fonte de tensão alternada, após uma possível resposta transitória inicial, a tensão e a corrente serão funções sinusoidais com a mesma frequência da fonte:


Circuito LC

CIRCUITO LC

No circuito do lado esquerdo da figura abaixo, o interruptor S tem estado fechado durante muito tempo e o interruptor S2 aberto. Num instante que designamos T=0 abre-se o interruptor S1 e, simultaneamente, fecha-se o interruptor S2. Assim, para T>=0 o circuito equivalente é o que aparece no lado direito da figura.

Circuitos de corrente alternada

HISTÓRIA

História
No fim da década de 1880 viveu-se nos Estados Unidos um período conhecido como a Guerra das Correntes. Nessa época já existia uma rede elétrica pública, usada principalmente para acender lâmpadas incandescentes e alimentar motores elétricos. A exploração dessa rede elétrica revertia grandes benefícios a Thomas A. Edison que tinha obtido várias patentes pela invenção da lâmpada e outros dispositivos para gerar corrente contínua. Outras pessoas tentaram entrar nesse novo negocio milionário com as suas inovações; George Westinghouse, quem já tinha tido sucesso comercializando as suas próprias patentes, contratou Nikola Tesla, um cientista brilhante, imigrante da Croácia. Tesla obteve uma patente pelo dispositivo na figura acima, para produzir e distribuir corrente alternada. A guerra das correntes acabaria por ser ganha pelo sistema de corrente alternada de Tesla e Westinghouse; uma das principais vantagens sobre o sistema de corrente contínua de Edison é a facilidade de poder aumentar ou diminuir a tensão por meio de transformadores.
As perdas de energia na transmissão de corrente em grandes distâncias são menores quanto maior for a tensão usada. Usa-se alta tensão para transferir a corrente desde as centrais elétricas até as localidades; a tensão deve ser reduzida antes de ser disponibilizada para o consumo doméstico, para reduzir os riscos de segurança.

Método das malhas

MÉTODO DAS MALHAS

Nos circuitos com várias resistências foi sempre possível substituir as resistências por uma única resistência equivalente, permitindo assim calcular a corrente fornecida pela fonte e todas as outras correntes nas resistências. Nos casos em que existem várias fontes ou quando não é possível associar resistências, ou capacitores, em série e em paralelo até obter uma única resistência (ou capacitor) equivalente, será útil usar o método das malhas. Por exemplo, no circuito da figura abaixo nenhuma das resistências está nem em série nem em paralelo com nenhuma outra.
Consequentemente, não é possível associar as resistências até obter uma única resistência equivalente.



Circuito com cinco resistências em que nenhuma delas está em série ou em paralelo com outra.

Usaremos esse circuito da figura acima para mostrar o fundamento do método das malhas. Na resolução de problemas não será preciso realizar a mesma análise que vamos fazer a seguir, mas bastará com aplicar as regras enunciadas no fim da seção, para escrever a matriz do circuito.

Leis dos circuitos

LEIS DOS CIRCUITOS

Leis dos circuitos
A análise de um circuito consiste em calcular a corrente ou diferença de potencial em cada resistência e a carga ou diferença de potencial em cada condensador. Com essas grandezas podemos também determinar a potência que está a ser dissipada nas resistências e a energia armazenada nos condensadores. Para analisar os circuitos é conveniente usar duas regras gerais designadas de leis de Kirchhoff.

A primeira lei, a lei dos nós, ou lei das correntes, consiste em que em qualquer ponto de um circuito onde exista separação da corrente (nó), a diferença entre a soma das correntes que entram no ponto e a soma das correntes que saem é igual a zero. Por exemplo, no nó representado na figura abaixo, há uma corrente I1 a entrar no nó, e duas correntes I2 e I3 a sair.

A lei das correntes implica:


Essa lei será válida sempre que as correntes sejam estacionárias; nomeadamente, quando a densidade da nuvem de cargas de condução permaneça constante dentro do condutor, sem existir acumulação de cargas em nenhum ponto; nesse caso, toda a carga que entra por um condutor, por unidade de tempo, deverá sair por outros condutores.

Diagramas de circuito

DIAGRAMA DE CIRCUITO

Para poder estudar um circuito mais facilmente, convém representá-lo por um diagrama de circuito. Por exemplo, a figura abaixo mostra o diagrama de circuito de um divisor de voltagem. Os pontos A, B e C são os 3 terminais de um potenciómetro (lado direito da figura 5.1), que é formado por um arco de círculo de um material condutor, entre os terminais nos dois extremos, A e C, e um contato móvel, ligado ao terminal central B, que pode ser deslocado sobre o arco condutor, rodando o eixo do potenciómetro. Assim, entre A e C temos uma resistência constante, Rp, e entre A e B temos umas resistência que pode ser modificada, entre 0 e Rp, rodando o eixo.

Diagrama de circuito de um divisor de voltagem e fotografia de um potenciómetro.

Entre os pontos A e C do potenciómetro foi ligada uma pilha com fem e e resistência interna rAs saídas do divisor de voltagem são os pontos A e Bonde foi ligada uma resistência R. Quando o contato móvel, B, do potenciómetro é deslocado entre A e C, a diferença de potencial na resistência R será a mesma que nos pontos A e B, que é diretamente proporcional à resistência do potenciómetro entre A e B. Assim, consegue-se obter em R uma diferença de potencial que pode ser ajustada entre 0 e um valor máximo.

Outro exemplo de diagrama de circuito é a montagem usada para carregar um condensador e a seguir observar como diminui a diferença de potencial quando o condensador é descarregado através de um voltímetro. 

Leis Elétricas

LEI DE OHM

A diferença de potencial, V, dividido pela corrente eléctrica, I , é resistência do resistor, R, que é denominada de Lei de Ohm: V = IR
A Lei de Ohm, assim designada em homenagem ao seu formulador, o físico alemão Georg Simon Ohm (1787-1854), afirma que, para um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante. Essa constante é denominada de resistência elétrica.

Primeira lei de Ohm
Quando essa lei é verdadeira num determinado condutor mantido à temperatura constante, este denomina-se condutor ôhmico. A resistência de um dispositivo condutor é dada pela fórmula:
 OU

V=é a diferença de potencial elétrico (ou tensão, ou ddp) medida em volt (V);
I=é a intensidade da corrente elétrica medida em ampère (A) e
R=é a resistência elétrica medida em ohm (Ω).
Essa expressão não depende da natureza de tal condutor: ela é válida para todos os condutores. Para um dispositivo condutor que obedeça à lei de Ohm, a diferença de potencial aplicada é proporcional à corrente elétrica, isto é, a resistência é independente da diferença de potencial e da corrente. Um dispositivo muito utilizado em aparelhos eletrônicos, como rádios, televisores e amplificadores, que obedece à essa lei é o resistor, cuja função é controlar a intensidade de corrente elétrica que passa pelo aparelho.2
Entretanto, para alguns materiais, por exemplo os semicondutores, a resistência elétrica não é constante, mesmo que a temperatura seja, ela depende da diferença de potencial. Estes são denominados condutores não ôhmicos. Um exemplo de componente eletrônico que não obedece à lei de Ohm é o diodo.

Interpretação da resistência elétrica
A resistência elétrica pode ser entendida como a dificuldade de se estabelecer uma corrente elétrica num determinado condutor. Por exemplo, um fio de nicromo precisa ser submetido à uma diferença de potencial de 300V para que seja estabelecida uma corrente de 1A, enquanto um fio de tungstênio precisa ser submetido à apenas 15V para que nele se estabeleça a mesma corrente. Isto significa que a resistência elétrica do nicromo é maior do que a do tungstênio:
Segunda lei de Ohm
A segunda lei de Ohm diz que a resistência elétrica de um condutor homogêneo e de seção transversal constante é proporcional ao seu comprimento, inversamente proporcional à sua área transversal e depende da temperatura e do material de que é feito o condutor:









Gerador elétrico

GERADOR ELÉTRICO

Gerador é um dispositivo utilizado para a conversão da energia mecânica, química ou outra forma de energia em energia elétrica.

Características
O tipo mais comum de gerador elétrico, o dínamo (gerador de corrente contínua) de uma bicicleta, depende da indução eletromagnética para converter energia mecânica em energia elétrica, a lei básica de indução eletromagnética é baseada na Lei de Faraday de indução combinada com a Lei de Ampere que são matematicamente expressas pela 3º e 4º equações de Maxwell respectivamente.
O dínamo funciona convertendo a energia mecânica contida na rotação do eixo do mesmo que faz com que a intensidade de um campo magnético produzido por um imã permanente que atravessa um conjunto de enrolamentos varie no tempo, o que pela Lei da indução de Faraday leva a indução de tensões nos terminais dos mesmos
A energia mecânica (muitas vezes proveniente de uma turbina hidráulica, à gás ou a vapor) é utilizada para fazer girar o rotor, o qual induz uma tensão nos terminais dos enrolamentos que ao serem conectados a cargas levam a circulação de correntes elétricas pelos enrolamentos e pela carga.
No caso de um gerador que fornece uma corrente contínua, um interruptor mecânico ou anel comutador alterna o sentido da corrente de forma que a mesma permaneça unidirecional independente do sentido da posição da força eletromotriz induzida pelo campo. Os grandes geradores das usinas geradoras de energia elétrica fornecem corrente alternada e utilizam turbinas hidráulicas e geradores síncronos.

Corrente elétrica

CORRENTE ELÉTRICA
A corrente elétrica (AOS 1945: corrente eléctrica) é o fluxo ordenado de partículas portadoras de carga elétrica, ou também, é o deslocamento de cargas dentro de um condutor, quando existe uma diferença de potencial elétrico entre as extremidades. Tal deslocamento procura restabelecer o equilíbrio desfeito pela ação de um campo elétrico ou outros meios (reação química, atrito, luz, etc.).
Sabe-se que, microscopicamente, as cargas livres estão em movimento aleatório devido à agitação térmica. Apesar desse movimento desordenado, ao estabelecermos um campo elétrico na região das cargas, verifica-se um movimento ordenado que se apresenta superposto ao primeiro. Esse movimento recebe o nome de movimento de deriva das cargas livres.
Raios são exemplos de corrente elétrica, bem como o vento solar, porém a mais conhecida, provavelmente, é a do fluxo de elétrons ou eletrões através de um condutor elétrico, geralmente metálico.
A intensidade I da corrente elétrica é definida como a razão entre o módulo da quantidade de carga ΔQ que atravessa certa secção transversal (corte feito ao longo da menor dimensão de um corpo) do condutor em um intervalo de tempo Δt.


A unidade padrão no SI para medida de intensidade de corrente é o ampère (A). A corrente elétrica é também chamada informalmente de amperagem. Embora seja um termo válido na linguagem coloquial, a maioria dos engenheiros eletricistas repudia o seu uso por confundir a grandeza física (corrente eléctrica) com a unidade que a medirá (ampère). A corrente elétrica, designada por I , é o fluxo das cargas de condução dentro de um material. A intensidade da corrente é a taxa de transferência da carga, igual à carga dQ transferida durante um intervalo infinitesimal dt dividida pelo tempo.

Interruptor

INTERRUPTOR

O interruptor é um dispositivo simples, usado para abrir ou fechar circuitos elétricos. São utilizados na abertura de redes, em tomadas e entradas de aparelhos eletrônicos, basicamente na maioria das situações que envolvem o ligamento ou desligamento de energia elétrica.

História
O médico Golding Bird havia criado primeiramente um interruptor para si mesmo, utilizado para enviar ondas de choque aos pacientes a uma célula voltaica por uma bobina de indução. A ideia veio das dificuldades da utilização dos interruptores mecânicos, que ocupavam as mãos do médico em uma rotação manual de uma roda dentada, ou o faziam precisar de um assistente para o trabalho. Com a invenção desse dispositivo, BIRD visava a libertação das mãos do médico na utilização de interruptores, um grande auxílio na época.

Tipos de Interruptores
  • Interruptor de Balancim – interruptor ativado por meio de uma alavanca oculta – o balancim – que necessita ser levado a uma ou mais posições indexadas, fazendo alterações no estado de contato.
  • Interruptor com Botão de Pressão – um dispositivo que é acionado através do pressionar de um botão, gerando alterações de contato.
  • Interruptor Rotativo – como o próprio nome diz, é um interruptor que gera alterações de contato por meio da rotação de um eixo para uma ou mais posições indexadas.
  • Interruptores automáticos- um dispositivo automático que acciona sem precisar de ser apalpado, que funciona na base de reles indutivos.

Fonte de corrente

FONTE DE CORRENTE

Uma fonte de corrente contínua é um dispositivo elétrico ou eletrônico que mantém uma corrente elétrica constante entre seus terminais independente da tensão elétrica que tenha que impor entre os mesmos para estabelecer o valor nominal de sua corrente. Nestes termos uma fonte de corrente é um dispositivo utópico visto que não há fontes de corrente ou tensões capazes de manter suas correntes ou tensões nominais de forma independente dos dispositivos a elas conectados.
O conceito é extensível à corrente alternada, caso no qual leva-se em conta os valores eficazes e não os instantâneos das grandezas envolvidas bem como a impedância interna e não apenas a resistência interna da fonte de corrente.
O símbolo de uma fonte de corrente ideal é formado por uma seta no interior de um círculo, e dois terminais para conexão. Quando trata-se de uma fonte de corrente alternada, há o acréscimo do símbolo "~" no diagrama, padrão para o caso.
Uma fonte de corrente real é geralmente representada pelo símbolo de uma fonte de corrente ideal em paralelo com a resistência interna desta fonte. O "resistor interno" está sempre presente nas representações tanto de fontes de tensão como de fontes de corrente reais. Nas fontes de tensão, aparecem em série com a fonte de tensão ideal - esta representada por um traço maior (o polo positivo) desenhado de forma paralela a um traço menor (polo negativo).
A "cargas" ou "cargas", ou seja, os demais dispositivos a serem alimentados pela fonte - não confundir com carga elétrica - são conectados em paralelo com a fonte ideal de corrente e seu resistor interno, e em série com a fonte ideal de tensão e seu resistor interno.
A tensão máxima disponível nos terminais de saída desta fonte real é justamente a corrente nominal da fonte ideal multiplicada pelo valor da resistência interna. Tal tensão corresponde à tensão presente entre os terminais da fonte real quando não há dispositivos conectados aos seus terminais externos, sendo esta tensão então designada por tensão em circuito aberto.
A máxima corrente disponível nos terminais externos da fonte real é equivalente à corrente nominal da fonte ideal, sendo obtida quando há um curto-circuito nos terminais externos, não havendo pois corrente em seu resistor interno. Trata-se da máxima corrente que a fonte é capaz de fornecer, sendo esta designada por corrente de curto-circuito.
A máxima potência que uma fonte de corrente real é capaz de fornecer a um dispositivo externo ocorre quando a resistência equivalente desse dispositivo iguala-se à resistência interna da fonte. Nesse caso o produto da tensão pela corrente sobre o dispositivo externo é máximo, e a fonte dissipa internamente potência equivalente à que entrega ao dispositivo. Quando, além de dispositivos resistivos há também dispositivos reativos no circuito, geralmente o caso em se tratando de corrente alternada, o teorema da máxima transferência de potência prevê que a impedância elétrica do circuito conectado à fonte deve igualar-se ao conjugado da impedância interna da fonte.
Uma fonte de tensão ideal com tensão nominal equivalente à tensão de circuito aberto medida para uma fonte de corrente, quando em série com um resistor equivalente de mesmo valor do que o encontrado nesta última, é para todos os efeitos equivalente à fonte de corrente real em consideração. Uma fonte de tensão ideal em série com o seu resistor interno pode para todos os efeitos ser também representada por uma fonte de corrente ideal em paralelo com uma resistência interna de igual, sendo a corrente nominal desta fonte de corrente neste caso igual ao valor da corrente de curto-circuito fornecida pela fonte de tensão real.
A fonte de corrente ideal comporta-se para efeitos práticos como uma fonte de corrente ideal quando as cargas a ela conectadas não representam um resistor equivalente com valor menor do que 10 vezes o valor da resistência interna da fonte (regra dos 10%).

Linha de transmissão

LINHA DE TRANSMISSÃO

Linha de transmissão, é um sistema usado para transmitir energia eletromagnética. Esta transmissão não é irradiada, é sim guiada de uma fonte geradora para uma carga consumidora, podendo ser uma guia de onda, um cabo coaxial ou fios paralelos ou torcidos.

Princípio
Equações de telegrafista
As equações de telegrafista determinam a propagação da energia elétrica ao longo da linha de transmissão. Para uma linha considerada sem perdas, as equações podem ser expressas como:

Transmissão

No caso do exemplo ilustrado o gerador de enérgia é chamado de "Xmtr", nada mais é do que um gerador de radiofreqüência, ou fonte geradora de potência. A linha de transmissão guia a energia até a carga, esta pode ser uma antena ou resistência pura. No primeiro caso a linha pode ou não ser balanceada, no segundo, não há necessidade de balanceamento, pois, a carga executa o trabalho de consumidor final de energia e não de irradiador.
Portanto, no caso do uso em radiofreqüência, a linha de transmissão pode servir em dois sentidos, tanto para guiar a energia eletromagnética que vai ser emitida pela antena em forma de sinais eletromagnéticos, quanto para guiar a energia absorvida pela antena. E, no caso de transmissão de eletricidade, esta transmite energia ao consumo final, sem duplo sentido de transmissão/recepção.

Recepção
A Antena pode ser considerada como um gerador, onde a energia após ser guiada pela linha de transmissão, vai ao "RCVR" ou receptor de ondas eletromagnéticas (um radioreceptor, por exemplo, que neste caso pode ser considerado como uma carga consumidora).

Outros modos
conforme explicitado anteriormente, a linha de transmissão não guia somente radiofreqüência, ela pode transportar energia elétrica de corrente alternada (CA), para alimentação industrial, residencial etc; energia elétrica de corrente contínua (CC), no caso de equipamentos eletroeletrônicos industriais, etc; telefonia; e uma infinidade de sinais híbridos, redes de computadores, etc.

O transporte e os parâmetros
A energia gerada nem sempre será utilizada, ou consumida no lugar de sua geração, portanto, a LT precisa ter a maior eficiência possível. Esta é delimitada pela indutância, capacitância, velocidade de propagação ou fator de velocidade, comprimento de onda, constante de fase, comprimento elétrico, e impedâncias, entre vários outros.

Diodo

DIODO SEMICONDUTOR

Diodo semicondutor é um dispositivo ou componente eletrônico composto de cristal semicondutor de silício ou germânio numa película cristalina cujas faces opostas são dopadas por diferentes gases durante sua formação, que causa a polarização de cada uma das extremidades.
É o tipo mais simples de componente eletrônico semicondutor, usado como retificador de corrente elétrica. Possui uma queda de tensão de, aproximadamente, 0,3 V (germânio) e 0,7 V (silício).

Comportamento em circuito
O diodo é um componente elétrico que permite que a corrente atravesse-o num sentido com muito mais facilidade do que no outro. O tipo mais comum de diodo é o diodo semicondutor, no entanto, existem outras tecnologias de diodo. Diodos semicondutores são simbolizados em diagramas esquemáticos como na figura abaixo. O termo "diodo" é habitualmente reservado a dispositivos para sinais baixos, com correntes iguais ou menores a 1A.


Quando colocado em um simples circuito bateria-lâmpada, o diodo permite ou impede corrente através da lâmpada, dependendo da polaridade da tensão aplicada, como nas duas figuras abaixo.
 

Na imagem da esquerda o diodo está diretamente polarizado, há corrente e a lâmpada fica acesa. Na imagem da direita o diodo está inversamente polarizado, não há corrente, logo a lâmpada fica apagada.
O diodo funciona como uma chave de acionamento automático (fechada quando o diodo está diretamente polarizado e aberta quando o diodo está inversamente polarizado). A diferença mais substancial é que, quando diretamente polarizado, há uma queda de tensão no diodo muito maior do que aquela que geralmente se observa em chaves mecânicas (no caso do diodo de silício, 0,7 V). Assim, uma fonte de tensão de 10 V, polarizando diretamente um diodo em série com uma resistência, faz com que haja uma queda de tensão de 9,3 V na resistência, pois 0,7 V ficam no diodo. Na polarização inversa, acontece o seguinte: o diodo faz papel de uma chave aberta, já que não circula corrente, não haverá tensão no resistor, a tensão fica toda retida no diodo, ou seja, nos terminais do diodo há uma tensão de 10 V.
A principal função de um diodo semicondutor, em circuitos retificadores de corrente, é transformar corrente alternada em corrente contínua pulsante. Como no semiciclo negativo de uma corrente alternada o diodo faz a função de uma chave aberta, não passa corrente elétrica no circuito (considerando o “sentido convencional de corrente”, do “positivo” para o “negativo”). A principal função de um diodo semicondutor, em circuitos de corrente contínua, é controlar o fluxo da corrente, permitindo que a corrente elétrica circule apenas em um sentido.

A dopagem do diodo semicondutor e os cristais P e N
A dopagem no diodo4 é feita pela introdução de elementos dentro de cristais tetravalentes, normalmente feitos de silício e germânio. Dopando esses cristais com elementos trivalentes, obtêm-se átomos com sete elétrons na camada de valência, que necessitam de mais um elétron para a neutralização (cristal P). Para a formação do cristal P, utiliza-se principalmente o elemento índio. Dopando os cristais tetravalentes com elementos pentavalentes, obtêm-se átomos neutralizados (com oito elétrons na camada de valência) e um elétron excedente (cristal N).
Para a formação do cristal N, utiliza-se principalmente o elemento Fósforo. Quanto maior a intensidade da dopagem, maior a condutibilidade dos cristais, pois suas estruturas apresentam um número maior de portadores livres (lacunas e elétrons livres) e poucas impurezas que impedem a condução da corrente elétrica. Outro fator que influencia na condução desses materiais é a temperatura. Quanto maior é a temperatura de um diodo, maior a condutibilidade, pelo fato de que a energia térmica ter a capacidade de quebrar algumas ligações covalentes da estrutura, acarretando no aparecimento de mais portadores livres para a condução de corrente elétrica.
Após dopadas, cada face dos dois tipos de cristais (P e N) tem uma determinada característica diferente da oposta, gerando regiões de condução do cristal, uma com excesso de elétrons, outra com falta destes (lacunas). Entre ambas, há uma região de equilíbrio por recombinação de cargas positivas e negativas, chamada de região de depleção (a qual possui uma barreira de potencial).

Polarização do diodo

Gráfico mostra a curva característica do comportamento do diodo em sua polarização direta e inversa
A polarização do diodo é dependente da polarização da fonte geradora. A polarização é direta quando o pólo positivo da fonte geradora entra em contato com o lado do cristal P(chamado de anodo) e o pólo negativo da fonte geradora entra em contato com o lado do cristal N(chamado de cátodo).
Assim, se a tensão da fonte geradora for maior que a tensão interna do diodo, os portadores livres se repelirão por causa da polaridade da fonte geradora e conseguirão ultrapassar a junção P-N, movimentando-os e permitindo a passagem de corrente elétrica. A polarização é indireta quando o inverso ocorre. Assim, ocorrerá uma atração das lacunas do anodo(cristal P) pela polarização negativa da fonte geradora e uma atração dos elétrons livres do cátodo (cristal N) pela polarização positiva da fonte geradora, sem existir um fluxo de portadores livres na junção P-N, ocasionando no bloqueio da corrente elétrica.
Pelo fato de que os diodos fabricados não são ideais(contém impurezas), a condução de corrente elétrica no diodo (polarização direta) sofre uma resistência menor que 1 ohm, que é quase desprezível. O bloqueio de corrente elétrica no diodo (polarização inversa) não é total devido novamente pela presença de impurezas, tendo uma pequena corrente que é conduzida na ordem de microampéres, chamada de corrente de fuga, que também é quase desprezível.

Testes com o diodo
Os diodos, assim como qualquer componente eletrônico, operam em determinadas correntes elétricas que são especificadas em seu invólucro ou são dadas pelo fabricante em folhetos técnicos. Além da corrente, a voltagem inversa (quando o diodo está polarizado inversamente) também é um fator que deve ser analisado para a montagem de um circuito e que tem suas especificicações fornecidas pelo fabricante. Se ele for alimentado com uma corrente ou tensão inversa superior a que ele suporta, o diodo pode ser danificado, ficando em curto ou em aberto. Utilizando de um ohmímetro ou um multímetro com teste de diodo, pode-se verificar se ele está com defeito.
Colocando-se as pontas de prova desses aparelhos nas extremidades do diodo (cátodo e ânodo), verifica-se que existe condução quando se coloca a ponteira positiva no ânodo e a negativa no cátodo, além de indicar isolação quando ocorre o inverso. Assim o díodo está em perfeitas condições de operação e com isso é possível a localização do cátodo e do ânodo, porém se os aparelhos de medição indicarem condução dos dois caminhos do díodo, ele está defeituoso e em curto. Se os aparelhos de medição indicarem isolação nos dois caminhos, ele também está defeituoso e em aberto.

Usos
O fenômeno da condutividade em um só sentido é aproveitado como um chaveamento da corrente elétrica para a retificação de sinais senoidais, portanto, este é o efeito diodo semicondutor tão usado na eletrônica, pois permite que a corrente flua entre seus terminais apenas numa direção. Esta propriedade é utilizada em grande número de circuitos eletrônicos e nos retificadores.
Os retificadores são circuitos elétricos que convertem a tensão CA (AC) em tensão CC (DC). CA vem de Corrente alternada, significa que os elétrons circulam em dois sentidos, CC (DC), Corrente contínua, isto é circula num só sentido.
A certa altura, o potencial U , formado a partir da junção n e p não deixa os eletrons e lacunas movimentarem-se, este processo dá-se devida assimetria de cargas existente.

Tipos de diodos semicondutores

Os diodos são projetados para assumir diferentes características: diodos retificadores são capazes de conduzir altas correntes elétricas em baixa frequência, diodos de sinal caracterizam-se por retificar sinais de alta frequência, diodos de chaveamento são indicados na condução de altas correntes em circuitos chaveados. Dependendo das características dos materiais e dopagem dos semicondutores há uma gama de dispositivos eletrônicos variantes do diodo:

Fotos